La résistance à l’oxydation isotherme et cyclique de l’alliage 718 produit par le procédé de fusion sélective par faisceau laser (LBM) et par faisceau d’électrons (EBM) a été comparée à celle de l’alliage 718 forgé (AMS5662). Les essais d’oxydation isotherme à 850 °C sous air ont montré des tenues à l’oxydation similaires en termes de prise de masse et d’oxydation intergranulaire pour les trois alliages. L’effet de la rugosité sur les cinétiques d’oxydation a été quantifié et il a été démontré que la cinétique d’oxydation intergranulaire suit le modèle de Wagner de l’oxydation interne avec un contrôle partiel par la diffusion de Al en volume. Les essais d’oxydation cyclique à 900 °C ont montré une couche d’oxyde bien plus adhérente pour l’échantillon forgé que pour les échantillons LBM et EBM. Cela pourrait être dû à une quantité de soufre en solution plus importante dans les échantillons issus de la FA. La résistance à la corrosion chaude cyclique et à l’oxydation cyclique à 900 °C et 1100 °C de superalliages issus de la FA (Alliage A, IN738, C1023 et Hastelloy X) ont été comparées. Les essais réalisés sur le banc d’oxydation cyclique du CIRIMAT et sur le banc brûleur de Safran Helicopter Engine, ont montré des cinétiques de variation de masse similaires sur les deux bancs malgré les atmosphères très différentes, sauf pour les alliages fortement affectés par la corrosion chaude à 900 °C sur banc brûleur. Les alliages les plus sensibles à la corrosion chaude cyclique ont une plus faible teneur en Cr (Alliage A) et/ou une teneur élevée en Mo (C1023), et présentent de l’oxydation intergranulaire (Alliage A, C1023 et 738). Dans l’ensemble, pour les matériaux les plus denses, les résultats ne montrent pas de différences significatives entre les échantillons issus de la FA et ceux coulés, ce qui valide ces nouveaux procédés de fabrication du point de vue de la résistance à l’oxydation-corrosion à haute température. |
The resistance to isothermal and cyclic oxidation of alloy 718 produced by laser beam melting (LBM) and electron beam melting (EBM) was compared to that of wrought alloy 718 (AMS5662). Isothermal oxidation tests at 850 °C in air showed similar oxidation behaviour in terms of weight gain and intergranular oxidation for all three alloys. The effect of roughness on oxidation kinetics was quantified and it was shown that the intergranular oxidation kinetics follow Wagner's model of internal oxidation partially controlled by the volume diffusion of Al. Cyclic oxidation tests at 900 °C showed a much more adherent oxide layer for the wrought sample than for the LBM and EBM samples. This could be due to a higher amount of sulphur in solution in the AM samples. The resistance to cyclic hot corrosion and cyclic oxidation at 900 °C and 1100 °C of superalloys from AM (Alloy A, IN738, C1023 and Hastelloy X) were compared. The tests carried out on CIRIMAT’s cyclic oxidation rig and on Safran Helicopter Engine’s burner rig showed similar mass variation kinetics on the two rigs despite the very different atmospheres, except for alloys strongly affected by hot corrosion at 900 °C on the burner rig. The alloys most susceptible to cyclic hot corrosion have a lower Cr content (Alloy A) and/or a high Mo content (C1023), and exhibit intergranular oxidation (Alloy A, C1023 and 738). Overall, for the densest materials, the results do not show significant differences between the samples made by AM and the cast samples. These results validate the use of these AM Ni-based superalloys, as far as high temperature oxidation-corrosion is concerned. |