L’azote est un élément essentiel au développement des êtres vivants. Bien qu’il soit présent en grande quantité dans l’air, sous la forme de diazote, il n’est pas directement assimilable par la plupart des êtres vivants. Les légumineuses, par exemple, n’ont pas la capacité de l’assimiler sous cette forme. Cependant, dans un environnement carencé en azote, les plantes sont capables d’interagir avec des bactéries du sol, les rhizobia, qui sont des microorganismes fixateur d’azote atmosphérique grâce à un complexe enzymatique, la nitrogénase. En effet, ces bactéries vont réduire le diazote en ammonium, qui est assimilable par la plante. Les plantes hébergent ces bactéries dans des organes particuliers au niveau de leurs racines, les nodosités, où elles vont leurs fournir des nutriments. La plante tolère au sein de ses propres cellules une quantité importante d’organismes étrangers, environ un milliard par nodosité. La colonisation bactérienne massive des nodosités est permise grâce à la suppression des réponses immunes de la plante. Les racines sont en contact avec l’abondante flore microbienne du sol, ce qui soulève la question des conséquences liées à la potentielle vulnérabilité des organes symbiotiques ainsi que les plantes nodulées. L’objectif du projet de thèse était d’évaluer la vulnérabilité des organes symbiotiques. Pour cela, nous avons mis en place deux systèmes tripartites impliquant la légumineuse-modèle, Medicago truncatula, son symbionte, Sinorhizobium medicae et séparément deux microorganismes phytopathogènes, une bactérie Ralstonia solancearum et un champignon Sclerotinia sclerotiorum. Nous avons aussi caractérisé les réponses des nodosités face à ces deux pathogènes et cela en prenant les racines comme référence. Enfin, nous avons estimé l’influence de la nodulation et de la fixation d’azote sur la vulnérabilité des plantes face à l’agent pathogène bactérien. Les travaux effectués durant les trois ans de thèse indiquent que les nodosités sont des sites d’infection pour les agents pathogènes et qu’elles sont capables de répondre à la présence de pathogènes, néanmoins de manière différente et plus faiblement que les racines. Les résultats obtenus en utilisant l’un de nos systèmes tripartites suggèrent que la nodulation et la fixation d’azote peuvent conférer une plus grande sensibilité face aux agents pathogènes. |
Nitrogen is essential element for the development of all living beings. Although it is found in large quantity in the air, in the form of dinitrogen, it is not directly assimilable by most organisms. For example, plants are not able to assimilate this form. However, in a nitrogen deficient environment, legumes are able to interact with soil borne bacteria, rhizobia, which fix nitrogen thanks to an enzymatic complex, the nitrogenase. Indeed, bacteria reduce dinitrogen in ammonium; plants can assimilate this form. Plants host these bacteria in particular organs at the root level, the nodules, where they provide nutrients to bacteria. Plant tolerates in its own cells a tremendous quantity of foreign organisms, estimated to one billion of rhizobia per nodule. The massive bacterial colonization of nodules is allowed thanks to the repression of plant immunity. Roots are in contact with the abundant soil microbiota, which raises the question of the potential vulnerability of the symbiotic organs and nodulated plants. The phD project aimed to evaluate the nodules vulnerability. To achieve this, we set up two tripartite systems involving the model legume, Medicago truncatula, its symbiont, Sinorhizobium medicae and separately two phytopathogenic microorganisms, a bacterium, Ralstonia solancearum and the fungus, Sclerotinia sclerotiorum. We also characterized nodules responses to both pathogens using roots as reference. Finally, we estimated the influence of nodulation and nitrogen fixation on the plant vulnerability to pathogens. Work performed during these three years indicates that nodules are infection sites for pathogens. Those nodules are able to perceive the pathogen however; their response is different and less intense than that of roots. Results obtained with one of our tripartite system suggest that nodulation and nitrogen fixation give a greater sensitivity to pathogens. |