Résumé
Le bilan de masse des glaciers est fortement lié au climat. Aux hautes latitudes, l’accumulation de neige pendant l’hiver et la fonte de glace pendant l’été sont les principales composantes du bilan de masse. En Islande, le bilan de masse des trois plus larges calottes glaciaires (~600-~8000 km²) a été suivi régulièrement depuis 25 ans notamment grâce à des mesures in situ. Mais les bilans de masse des autres glaciers et calottes glaciaires islandaises ont été très peu étudiés. Aujourd’hui, les données de télédétection, notamment via la comparaison des modèles numériques du terrain (MNT), permettent de mesurer le bilan de masse par la méthode géodésique. Pour ces glaciers et calottes de plus petites tailles (de 1 km² et à quelques centaines de km²), les photographies aériennes, l’imagerie satellitaire stéréoscopique sub-métriques, et le lidar aérien sont parfaitement adaptées. Cette thèse se focalise donc sur l’estimation des bilans de masse des « petits » glaciers et calottes islandaises depuis le pas de temps saisonnier jusqu’à pluri-décennal et leur relation avec les variations spatiales et temporelles du climat.
Le bilan de masse hivernal de la calotte du Drangajökull (NO-Islande) a été mesuré par des images satellitaires stéréoscopiques sub-métriques (données Pléiades et WorldView-2) acquises au début, milieu et à la fin de l’hiver 2014-2015. Les changements de volume ont été convertis en bilan de masse grâce à des mesures in situ de densité de neige, et validés avec des mesures in situ de profondeur de neige. Ce travail permet d’envisager désormais un suivi du bilan de masse saisonnier sans un laborieux travail de terrain.
Une importante archive de photographies aériennes est disponible en Islande depuis 1945. Ces données offrent une revisite de 5 à 20 ans pour la majorité des glaciers. De plus, depuis 2000, cette archive est complétée par les données des capteurs satellitaires stéréoscopiques. Cet ensemble de données est exploité pour créer une série temporelle de 70 ans de bilan de masse en Islande. La calotte d’Eyjafjallajökull (~70 km²) sert de zone test pour la création et l’automatisation d’une chaîne de traitement, basée sur des logiciels libres. Le résultat est une série de 70 ans de bilan de masse et changements glaciaires liés au climat et au volcanisme. Les variations décennales du bilan de masse sont mises en relation avec les variations des températures estivales et les précipitations hivernales. Cette relation, quasi linéaire, sert pour le calcul de la sensibilité du bilan de masse au changement de température et précipitation.
La chaîne de traitement est alors appliquée à 14 glaciers et calottes glaciaires distribuées aux quatre coins de l’Islande. La moyenne et déviation standard (±DS) du bilan de masse des glaciers sélectionnés est : –0.44±0.16 m w.e. a–1 en 1945–1960, 0.00±0.21 m w.e. a–1 en 1960–1980, 0.11±0.25 m w.e. a–1 en 1980–1994, –1.01±0.50 m w.e. a–1 en 1994–2004, –1.27±0.56 m w.e. a–1 en 2004–2010 et –0.14±0.51 m w.e. a–1 en 2010–2015. Les glaciers maritimes situés près des côtes sud et ouest montrent une plus forte variabilité décennale que les glaciers plus continentaux situés dans le nord et nord-ouest. Notre étude améliore la connaissance des évolutions des glaciers islandais et leur relation avec le climat, en particulier avant les années 1990s et l’augmentation de température. Nos travaux montrent aussi la complexité de la réponse géométrique des glaciers (en lien avec leur dynamique) et offre des données uniques pour la calibration/validation des modèles des glaciers. |
The mass balance of a glacier is strongly connected to climate. Mass balance is typically controlled by snow accumulation during the winter and the glacier ablation during the summer. In Iceland, direct mass balance observations have been mostly focused on the three largest ice caps (~600 to ~8000 km2), measured in situ for the last 25 years. There are, however, glaciers and ice caps distributed over all quarters of the country that lack mass balance observations. Remote sensing data with the capability to retrieve the glacier surface geometry through Digital Elevation Models (DEMs) are valuable tools to measure mass balance using the geodetic method. For a typical Icelandic glacier (with an area between 1 km2 and hundreds of km2), this can be optimally achieved from optical stereoscopic imagery, emplaced in airborne or spaceborne sensors, and from airborne lidar. This thesis focuses on remote sensing techniques to accurately measure geodetic mass balance from seasonal to decadal time spans and the relationship of mass balance to climate.
As an example of seasonal mass balance, the winter mass balance of Drangajökull was measured from satellite sub-meter stereo images at the beginning, middle and end of the 2014–2015 winter using data from the Pléiades and WorldView-2 satellites. The results were complemented with in situ snow density measurements and validated with snow thickness measurements. This suggests new opportunities to monitor seasonal mass balance without tedious field logistics.
A vast archive of aerial photographs exists for Iceland extending back to 1945. Since then, most glaciers were surveyed every 5 to 20 years. In addition, a wealth of modern satellite stereo images is available since the early 2000s. This creates a unique dataset to construct a 70-year time series of geodetic mass balances. Eyjafjallajökull (~70 km2) was used to develop semi-automated processing chains based on open-source software. The result is a detailed record of glacier changes resulting from climatic and volcanic forcing. The mass balance record has a high correlation to a linear function of summer temperature and winter precipitation, which helped to infer the sensitivities of mass balance to these two climatic variables.
The processing chain was then applied to 14 Icelandic glaciers and ice caps spatially distributed in all quarters of Iceland, resulting in a dense mass-balance record for the last 70 years. The mean and standard deviation (mean±SD) of mass balances of the target glaciers were –0.44±0.16 m w.e. a–1 in 1945–1960, 0.00±0.21 m w.e. a–1 in 1960–1980, 0.11±0.25 m w.e. a–1 in 1980–1994, –1.01±0.50 m w.e. a–1 in 1994–2004, –1.27±0.56 m w.e. a–1 in 2004–2010 and –0.14±0.51 m w.e. a–1 in 2010–2015. The glaciers located at the south and west coasts revealed the highest decadal variability, in contrast to glaciers located in the north and northwest. This study improves the knowledge of the Icelandic glaciers prior to the warm 1990s, revealing irregularities in ice dynamics, and opening opportunities for glacier modelling based on the obtained datasets. |