The realisation of organic/inorganic coatings on metal substrates, prepared by sol-gel route and shaped by electrophoretic deposition (EPD), is a new combined process which has been the subject of only few studies. EPD technique offers an easy control of the thickness and morphology of the film even on substrates of complex shape, which are the main challenges for all kinds of deposition techniques used in various industrial fields. Moreover, sol-gel route has been extensively studied as a potential alternative pre-treatment to prepare a variety of materials with versatile applications from anti-corrosion to anti-wear. So, coupling these two techniques is one way to obtain both benefits on a same system. In this work, the electrophoretic deposition was performed on AA2024 from an aqueous sol suspension containing sol-gel boehmite nanoparticles (NPs). The influence of the applied voltage and deposition time on the deposit thickness was studied. The effect of the concentration of NPs, added in the precursor sol, on the thickness was also investigated. It is shown that an increase in the applied voltage and deposition time increased the thickness of the deposit film (from 2 to 11 µm). However, for a same voltage, increasing the concentration of NPs in the precursor sol, progressively increases the coating thickness (Figure 1.) and appears as a key parameter to adjust the coating thickness. Finally, it was demonstrated that a perfect control of the microstructure and the deposit thickness was achievable, thanks to both EPD parameters and sol properties |