Pancreatic ductal adenocarcinoma (PDAC) is extremely stroma-rich. Cancer-associated fibroblasts (CAFs) secrete proteins that activate survival and promote chemoresistance of cancer cells. Our results demonstrate that CAF secretome-triggered chemoresistance is abolished upon inhibition of the protein synthesis mTOR/4E-BP1 regulatory pathway which we found highly activated in primary cultures of α-SMA-positive CAFs, isolated from human PDAC resections. CAFs selectively express the sst1 somatostatin receptor. The SOM230 analogue (Pasireotide) activates the sst1 receptor and inhibits the mTOR/4E-BP1 pathway and the resultant synthesis of secreted proteins including IL-6. Consequently, tumour growth and chemoresistance in vivo, are reduced when chemotherapy (gemcitabine) is combined with SOM230 treatment. While gemcitabine alone has marginal effects, SOM230 is permissive to gemcitabine-induced cancer cell apoptosis and acts as an antifibrotic agent. We propose that selective inhibition of CAF protein synthesis with sst1-directed pharmacological compounds represents an anti-stromal-targeted therapy with promising chemosensitization potential. |