Soutenance de thèse de Aziza CHAIRAT

Etude expérimentale et modélisation pour le traitement thermique du système "dioxyde d'uranium-résine époxydique"


Titre anglais : Experimental study and model development for "uranium dioxide-epoxy resin" heat treatment.
Ecole Doctorale : MEGEP - Mécanique, Energétique, Génie civil, Procédés
Spécialité : Génie des Procédés et de l'Environnement
Etablissement : Institut National Polytechnique de Toulouse
Unité de recherche : UMR 5503 - LGC - Laboratoire de Génie Chimique
Direction de thèse : Xavier JOULIA
Co-encadrement de thèse : Pascal FLOQUET


Cette soutenance a eu lieu lundi 16 mars 2015 à 9h00
Adresse de la soutenance : INSTN, Route du Château 13115 Saint-Paul-Lez-Durance, France - salle Amphithéâtre de l’IN

devant le jury composé de :
Xavier JOULIA   Professeur   a/ Université de Toulouse, b/ CNRS   Directeur de thèse
Pascal FLOQUET   Professeur   a/ Université de Toulouse, b/ CNRS   Co-encadrant de thèse
CARINE ABLITZER   HDR   CEA CADARACHE   Co-encadrant de thèse
Olivier FIQUET   Ingénieur   CEA CADRACHE   Co-encadrant de thèse
Patrick BAUSSAND   Professeur   Université Joseph FOURIER (GRENOBLE 1)   Rapporteur
Frédéric MARIAS   Professeur   a/ l'Ecole Nationale Supérieure en Génie des Technologies Industrielles de l'Université de Pau et des Pays de l'Adour   Rapporteur
Dominique POUYAT     CEA CARDARACHE   Examinateur
Jean-Henry FERRASSE   Maître de conférences   a/ Laboratoire de Mécanique, Modélisation et Procédés Propres b/Département Génie Chimique Génie des Procédés, IUT de Marseille   Examinateur


Résumé de la thèse en français :  

Dans le cadre de la caractérisation des combustibles nucléaires irradiés, une résine est utilisée pour enrober des échantillons de matériau combustible. Or la gestion de ces échantillons après usage implique la définition d'un procédé de séparation du matériau combustible de la résine d'enrobage. Cette séparation est en effet rendue nécessaire par la possibilité de dégradation de la résine et de libération de gaz sous l'effet de phénomènes de radiolyse dus aux rayonnements α, β et γ des combustibles. Un traitement thermique est envisagé pour cette séparation. Les travaux, qui visent à améliorer la connaissance des phénomènes, s'appuient à la fois sur des expérimentations sur systèmes modèles et sur la modélisation des réactions de pyrolyse de la résine et des transferts couplés de matière, de chaleur et de quantité de mouvement. Une des difficultés de l'étude réside dans la nécessité de maîtriser le procédé à différentes échelles : une échelle globale, correspondant aux conditions de traitement visées dans le four, et une échelle locale correspondant aux conditions au voisinage immédiat du matériau combustible. Les essais expérimentaux sont réalisés d'une part en thermo-balance pour l'acquisition de données cinétiques et d'autre part sur un four pilote afin de traiter des quantités plus significatives de résine. Le procédé choisi comporte deux étapes, une première étape de pyrolyse suivie d'une étape d'oxydation du résidu de pyrolyse. Les deux étapes sont susceptibles d'oxyder le combustible lui-même. En effet, la première étape de pyrolyse conduit à la formation d'un mélange gazeux qui peut rendre l'atmosphère localement oxydante. La seconde étape est oxydante par définition. La pyrolyse de la résine produit des gaz incondensables, de la vapeur d'eau, des goudrons et un résidu carboné dont la teneur finale en hydrogène doit être nulle. L'étude du procédé de pyrolyse comporte plusieurs parties. La première partie consiste à étudier la cinétique globale de dégradation de la résine époxy et à déterminer la cinétique de dégagement des différents gaz. Pour prendre en compte la présence du combustible dans le milieu de traitement, des expériences de traitement d'un mélange époxy-UO2 en thermobalance ont été réalisées. Les résultats montrent l'absence d'un effet significatif de la présence du combustible. La deuxième partie est l'intégration des résultats expérimentaux obtenus dans le modèle. La modélisation du four est réalisée dans l'environnement COMSOL Multiphysics. Les résultats montrent un bon accord avec les mesures expérimentales. Sur la base de cette modélisation, une amélioration du four d'essai a été proposée. A la fin de l'étape de pyrolyse, la phase solide résiduelle contient toujours de l'hydrogène. Pour minimiser cette quantité, l'oxydation du résidu de pyrolyse est une étape nécessaire. Deux types de procédés ont été proposés à savoir l'oxydation sous une atmosphère contrôlée en oxygène et la gazéification sous dioxyde de carbone qui permettent l'élimination du résidu de pyrolyse en laissant intègre le combustible uranium dans des conditions bien définies.

 
Résumé de la thèse en anglais:  

In order to characterize nuclear fuels, samples are currently embedded in an epoxy polymer resin. In storage conditions, the presence of organic products in contact with highly radioactive material generates gas due to a radiolysis phenomenon (α, β and γ rays). Samples management imposes the definition of a fuel and resin separation process. This work aims at developing a tool for the optimal design and control of a suitable heat treatment process. This development is based on experiments and on the modeling of the resin pyrolysis reactions coupled to mass, heat and momentum ? transfers. One of the difficulties of the study lies to the needed process control on various scales: i) on a global scale to represent the treatment conditions and ii) on a local scale to represent the conditions close to fuel material. This study uses a combined modeling - simulation approach with experiments carried out with the help of a thermo-balance for kinetic data acquisition, on the one hand and in an experimental oven, on the other hand. The process will be performed in two stages, resin pyrolysis and residue (Char) oxidation. Nuclear fuel can be oxidized during both stages. Indeed, the pyrolysis degrades the resin and generated pyrolysis gases, which produce an oxidizing atmosphere. Oxidation of pyrolysis residue can modify the structure of spent fuel and liberate fission gases. The resin pyrolysis produced incondensable gases, steam, tar and char. The final hydrogen content in the char has to be as low as possible and close to zero to be sure that the radiolysis phenomenon will never occur during of nuclear fuel storage. The process development has been carried out in stages. The first step is to investigate the overall kinetics of epoxy degradation and the determination of the generated gas kinetics. The influence of the presence of nuclear fuel is investigated with epoxy-UO2 mixture. The results showed no significant effect of the nuclear fuel presence. The second part is the coupling of kinetic model to the partial differential equations (mass, energy and momentum balance) to obtain a representative model of the oven in terms of temperature and chemical species composition. The Modeling of the oven is carried out using COMSOL software. The results showed a good agreement with experimental measurements. After pyrolysis, char still contains significant amount of hydrogen. To minimize this quantity, the oxidation of the char is a necessary step. Two treatment types are proposed: An oxidation under a controlled oxygen atmosphere and carbon dioxide gasification. These methods are efficient to eliminate the residual of hydrogen content while keeping the fuel integrity.

Mots clés en français :traitement thermique, combustible nucléaire irradié, résine, désaralditage, expérimentation, modélisation,
Mots clés en anglais :   heat treatment, resin, irradiated fuel, hydrogen, experiment, modeling,