Soutenance de thèse de Pierre-Yves SOLANE

Spectroscopie optique du graphène et du graphite sous champ Mégagauss


Titre anglais : Optical Spectroscopy of graphene and graphite under Mégagauss field
Ecole Doctorale : SDM - SCIENCES DE LA MATIERE - Toulouse
Spécialité : Physique de la Matière
Etablissement : Université de Toulouse
Unité de recherche : UPR 3228 - LNCMI - Laboratoire National des Champs Magnétiques Intenses
Direction de thèse : Geert RIKKEN


Cette soutenance a eu lieu lundi 10 décembre 2012 à 10h00
Adresse de la soutenance : LNCMI-Toulouse 143 ave de Rangueil 31400 Toulouse - salle Seminaire

devant le jury composé de :
Piotr KOSSACKI   Professeur     Rapporteur
Michael VON ORTENBERG   Professeur     Rapporteur
Wolfgang BACSA   Professeur     Examinateur
Benoit JOUAULT   Chargé de Recherche HDR     Examinateur
Geert RIKKEN   Directeur de Recherche     Directeur de thèse
Oliver PORTUGALL   Ingénieur de Recherche     CoDirecteur de thèse


Résumé de la thèse en français :  

La découverte expérimentale du graphène (monocouche de graphite) en 2004 a provoqué un grand engouement dans la communauté scientifique. Cela a également renouvelé l'intérêt pour l'étude du graphite. Les propriétés de ces deux matériaux ont largement été étudiées par le biais de différentes techniques expérimentales (transport, optique…). Dans cette thèse nous démontrons que les mesures de transmission effectuées sous champ magnétiques très intenses (> 1 millions de fois le champ magnétique terrestre) sont un outil très puissant pour étudier la structure électronique du graphène et du graphite.
Dans un premier temps, nous montrerons que l'asymétrie électron-trou dans le graphite est causée par le terme souvent négligé de l'énergie cinétique d'un électron libre. Ce terme, également présent dans l'Hamiltonien décrivant les propriétés électroniques du graphène, explique élégamment l'asymétrie électron trou qui y est observée.
Deuxièmement, l'utilisation de nombreuses sources dans l'infrarouge et dans le visible (200meV à 2eV) nous a permis d'observer de grandes séries de transitions interbandes dans le graphite entre les quatre bandes (E3+, E3-, E1 et E2) jusqu'à 150 T et à température ambiante. La résonance au point K peut être parfaitement décrite avec le modèle du bicouche effectif et la résonance au point H correspond à celle d'une monocouche de graphène.
Enfin, nous démontrerons que ces résonances peuvent être réduites à une simple mesure de la relation de dispersion décrite par la formule relativiste E2=m02v4 + p2v2, avec v la vitesse de Fermi et, où l'énergie d'une particule au repos m0v² est égale à 385 meV au point K et est nulle au point H.

 
Résumé de la thèse en anglais:  

Since its experimental discovery in 2004, graphene (a single layer of graphite) has attracted a lot of attention. It also leads to a renewed interest in graphite. Subsequently, both these materials have extensively been studied using different experimental techniques. In this thesis we demonstrate that transmission measurements performed in extremely high magnetic field (> 1 million times the earth's magnetic field) are a very useful tool to investigate the electronic structure of graphene and graphite. In particular, we will demonstrate that electron-hole asymmetry in graphite is caused by the often neglected free-electron kinetic energy term. This term is also present in the Hamiltonian describing electronic properties of graphene, hence it will lead to an asymmetry in graphene. Additionally, using near-infrared and visible sources from 200meV to 2eV we observe strong series of interband transitions in graphite between the four interlayer split bands (E3+, E3-, E1 and E2) up to 150 T at room temperature. The K-point electron resonances can be described well using an effective bilayer graphene model and the H-point transitions correspond to monolayer graphene. It is demonstrated that this can be reduced to a single measurement of the dispersion relation which is described by the relativistic formula where E2=m02v4 + p2v2 with v the Fermi velocity and a single particle rest energy m0v² of 385 meV for the K-point electrons and zero as expected for the H-point.

Mots clés en français :Champ Magnétique, Graphène, Graphite, Optique, Spectroscopie,
Mots clés en anglais :   Magnetic Field, Graphene, Graphite, Optic, Spectroscopy,