Soutenance de thèse de Kaitlin MAILE

Optimisation architecturale des réseaux neuronaux artificiels


Titre anglais : Architectural optimization of artificial neural networks
Ecole Doctorale : EDMITT - Ecole Doctorale Mathématiques, Informatique et Télécommunications de Toulouse
Spécialité : Informatique et Télécommunications
Etablissement : Université Toulouse 1 Capitole
Unité de recherche : UMR 5505 - IRIT : Institut de Recherche en Informatique de Toulouse
Direction de thèse : Hervé LUGA- Sylvain CUSSAT-BLANC
Co-encadrement de thèse : Dennis WILSON


Cette soutenance a eu lieu mercredi 04 octobre 2023 à 15h00
Adresse de la soutenance : ISAE SUPAERO - PÔLE DIRECTION 10 Av. Edouard Belin, 31400 Toulouse - salle Salle des Thèses

devant le jury composé de :
Hervé LUGA   Professeur des universités   Université Toulouse II Jean Jaurès   Directeur de thèse
Carola DOERR   Directrice de recherche   Sorbonne Université   Rapporteur
Decebal MOCANU   Professeur associé   Université du Luxembourg   Rapporteur
Dennis WILSON   Professeur assistant   ISAE-SUPAERO   Co-encadrant de thèse
Frank HUTTER   Professeur   Universität Freiburg   Examinateur
Marc SCHOENAUER   Directeur de recherche   INRIA - Orsay   Examinateur
Rufin VAN RULLEN   Directeur de recherche   Centre de Recherche Cerveau et Cognition (CerCo)   Examinateur


Résumé de la thèse en français :  

Malgré les progrès considérables et exponentiels des réseaux neuronaux artificiels (ANNs), leurs capacités actuelles sont encore loin de l'intelligence humaine. De nombreuses hypothèses des approches actuelles de l'apprentissage artificiel divergent des caractéristiques observées du cerveau, telles que les architectures ANN conventionnellement statiques et conçues à la main, opposées à la connectivité biologique dynamique et auto-modifiante. Cette thèse vise à faire avancer les choses en explorant l'apprentissage structurel en tant qu'outil inspiré du cerveau pour augmenter la puissance des ANNs, en prenant des mesures initiales pour étendre les espaces de recherche architecturaux et les paradigmes d'apprentissage à des applications pratiques réelles. À cette fin, le cadre d'apprentissage structurel proposé unifie plusieurs sous-domaines de la recherche en intelligence artificielle et identifie les principaux défis fondamentaux qui sont étudiés dans les travaux ultérieurs. En ce qui concerne la généralisation de l'espace de recherche architecturale, la recherche d'architecture neuronale (NAS) tenant compte de l'équivariance optimise les contraintes architecturales imposées par l'équivariance partielle aux groupes de symétrie, améliorant ainsi les performances et la généralisation des ANNs pour les tâches présentant des symétries. Les améliorations algorithmiques apportées à la recherche d'architecture neuronale différentiable, axées sur la planification dynamique et la régularisation, renforcent l'efficacité et la fiabilité du processus de recherche. La neurogenèse dans les ANNs, un problème peu étudié, est décomposée en décisions d'ordonnancement et d'initialisation vers une suite de stratégies de neurogenèse qui permettent la construction automatique et dynamique de réseaux performants. Enfin, les aspects de tous les résultats précédents sont synthétisés en vue d'une optimisation architecturale dans des environnements d'apprentissage dynamiques tels que l'apprentissage par transfert. Les résultats et les méthodologies présentés ont le potentiel d'avoir un impact significatif sur le pipeline standard des RNA, en réduisant les coûts d'ingénierie, de formation et de déploiement tout en augmentant leur efficacité et leur puissance pour les praticiens.

 
Résumé de la thèse en anglais:  

Malgré les progrès considérables et exponentiels des réseaux neuronaux artificiels (ANNs), leurs capacités actuelles sont encore loin de l'intelligence humaine. De nombreuses hypothèses des approches actuelles de l'apprentissage artificiel divergent des caractéristiques observées du cerveau, telles que les architectures ANN conventionnellement statiques et conçues à la main, opposées à la connectivité biologique dynamique et auto-modifiante. Cette thèse vise à faire avancer les choses en explorant l'apprentissage structurel en tant qu'outil inspiré du cerveau pour augmenter la puissance des ANNs, en prenant des mesures initiales pour étendre les espaces de recherche architecturaux et les paradigmes d'apprentissage à des applications pratiques réelles. À cette fin, le cadre d'apprentissage structurel proposé unifie plusieurs sous-domaines de la recherche en intelligence artificielle et identifie les principaux défis fondamentaux qui sont étudiés dans les travaux ultérieurs. En ce qui concerne la généralisation de l'espace de recherche architecturale, la recherche d'architecture neuronale (NAS) tenant compte de l'équivariance optimise les contraintes architecturales imposées par l'équivariance partielle aux groupes de symétrie, améliorant ainsi les performances et la généralisation des ANNs pour les tâches présentant des symétries. Les améliorations algorithmiques apportées à la recherche d'architecture neuronale différentiable, axées sur la planification dynamique et la régularisation, renforcent l'efficacité et la fiabilité du processus de recherche. La neurogenèse dans les ANNs, un problème peu étudié, est décomposée en décisions d'ordonnancement et d'initialisation vers une suite de stratégies de neurogenèse qui permettent la construction automatique et dynamique de réseaux performants. Enfin, les aspects de tous les résultats précédents sont synthétisés en vue d'une optimisation architecturale dans des environnements d'apprentissage dynamiques tels que l'apprentissage par transfert. Les résultats et les méthodologies présentés ont le potentiel d'avoir un impact significatif sur le pipeline standard des RNA, en réduisant les coûts d'ingénierie, de formation et de déploiement tout en augmentant leur efficacité et leur puissance pour les praticiens.

Mots clés en français :bio-inspirés, réseaux de neurones, apprentissage automatique, intelligence artificielle,
Mots clés en anglais :   artificial intelligence, machine learning, bio-inspired, neural networks,