L’accumulation de crises sociales, économiques et énergétiques depuis des décennies conduit la société à une situation critique. La dépendance aux combustibles fossiles pour la production d'énergie et de produits chimiques doit être rapidement réduite en remplaçant les sources fossiles par des sources renouvelables. La biomasse lignocellulosique apparaît comme une bonne alternative pour la production de produits chimiques et de carburants durables. Cette matière première renouvelable, composée de cellulose, d'hémicelluloses et de lignine, se trouve en grande partie dans les déchets, le bois, les cultures énergétiques et les résidus agricoles. Les matières premières de deuxième génération issues de la biomasse-permettent la production de carburants liquideschimiquement identiques à ceux issus du pétrole et utilisables dans les moteurs à combustion d'aujourd'hui. Utiliser la biomasse pour la production de produits chimiques estdonc une voie prometteuse et d’un grand intérêt pour l'environnement. Plusieurs molécules plateformes, telles que le furfural et le 5-hydroxyméthylfurfural, sont accessibles à partir de la biomasse, pouvant conduire à une vaste gamme de composés à valeur ajoutée.
Pour réaliser ces transformations de façon performante, des nanocatalyseurs bimétalliques à base de métaux abondants ont été développés, en pensant à leur incorporation potentielle dans des processus industriels pour la transition énergétique. Une série de matériaux bimé-talliques associant le Ru au Ni ou au Cu comme second métal a été synthétisée avec succès et entièrement caractérisée. Différents stabilisants ont été utilisés, tels que la polyvinylpyr-rolidone, la diphényl-2-pyridylphosphine et l'hexadécylamine, condusiant à des nanomaté-riaux bimétalliques RuNi et RuCu bien contrôlés et de très petite taille (<2nm), avec diffé-rents ratios en métaux. Des homologues monométalliques ont aussi été préparés à des fins de comparaison.
Les nanoparticules RuNi/PVP ont montré des effets synergiques entre les métaux dans l’hydrogénation catalytique efficace et sélective du furfural et du 5-hydroxyméthylfurfural. Des calculs DFT par modélisation des nanoparticules de Ru, Ni et RuNiavec adsorption de diverses espèces à leur surfaceont permis de mieux comprendre les résultats expérimentaux. Les résultats obtenus confirment l'activité et la sélectivité observées en catalyse. Lors-qu’utilisées comme catalyseurs dans la même réaction d'hydrogénation, les nanoparticules de RuCu/PVP sont moins performantes que les homologues monométalliques correspondants et que les nanoparticules RuNi/PVP.
Les nanoparticules RuNi/PVP et RuNi/PPh2Py ont également catalysé l'hydrogénation sélective de la quinoléine, en observant une dépendance de l'activité par rapport à la tempé-rature et la teneur en Ru. En utilisant le 1-propanol comme solvant, la N-alkylation du substrat s'est produite de façon notable à partir de 125ºC.
Le deutérium étant un isotope stable et sûr de l'hydrogène, les molécules marquées au deu-térium suscitent un grand intérêt, notamment dans l'industrie médicinale et pharmaceutique pour la conception de nouveaux médicaments. Les nanoparticules Ru/PVP ont été testées pour la deutération d'une série de substrats modèles (4-méthoxyaniline, 4-trifluorométhylbenzaldéhyde, méthyl-2,3-O-Isopropylidène-β-D-ribofuranoside et adéno-sine). Malgré l’absence dedeutération, des réactions intéressantes de déprotection et d'épi-mérisation ont été observées pour les trois premiers substrats. Avec l'adénosine, la deutéra-tion a eu lieu de manière sélective.
Ce travail décrit la synthèse de nouveaux nanomatériaux bimétalliques présentant des pro-priétés modulables et prometteuses pour la catalyse. L'hydrogénation de molécules dérivées de la biomasse, telles que le furfural et le 5-hydroxyméthylfurfural, a été menée avec succès. Des nanoparticules monométalliques de Ru/PVP ont également permis de catalyser des réactions de deutération. |
An accumulation of social, economic, and energetic crises occurring for decades drives the society to a critical situation. The dependency on fossil fuels for energy and chemicals pro-duction is noticeable and needs to be rapidly reduced by replacing thosesourceswithrenew-ableones. Lignocellulosic biomass appears as a good alternative to the production of sus-tainable chemicals and fuels. This renewable feedstock is composed of cellulose, hemicel-luloses and lignin, and can be vastly found in waste streams, wood, energy crops and agri-cultural residues. Liquid fuels may be produced from second generationfeedstocks of bio-mass, which are chemically identical to the ones from petroleum, and which can be used in the same combustion engines as those present nowadays. The replacement of fossil by biomass feedstocks for the production of chemicals is of great interest for environmental purposes. This promising feedstock can produce several platform molecules, such as furfural and 5-hydroxymethylfurfural, from which a vast range of value-added compounds can be obtained.
For a better performance of these transformations, selective and effective bimetallic nano-catalystshave been developed in this work, containing earth-abundant metals, thinking about their potential incorporation in industrial processes for energy transition. For this purpose, a series of Ru bimetallic materials containing either Ni or Cu as second metal were synthesised. Several stabilisers for the nanoparticles were used such as polyvinylpyrrolidone, diphenyl-2-pyridylphosphine and hexadecylamine.The synthesis of ultra-small (<2nm) RuCu and RuNi bimetallic nanomaterials, as well as their monometallic counterparts, was successful, by controlling the metal ratio between metals.
RuNi/PVP nanoparticles showed synergetic effects between metals in both efficient and selective catalytic hydrogenations of furfural and 5-hydroxymethylfurfural. DFT calculations were performed to help us understand the experimental results, by modelling Ru, Ni and RuNi nanoparticles and adsorbing the different species on their surface. The results from theoretical calculations are in the line of the activity and selectivity observed in experimental catalytic experiments. RuCu/PVP nanoparticles,used as catalysts in the same hydrogenation reaction, were less performant than the corresponding monometallic counterparts, as well as the RuNi/PVP nanoparticles.
RuNi/PVP andRuNi/PPh2Py nanoparticles were used as catalysts on the selective hydro-genation of quinoline, observing a dependence of the activity on the temperature and the Ru content. By using 1-propanol as solvent, N-alkylation of the substratocurred, noticeably from 125ºC.
Deuterium-labelled molecules, being a stable and safehydrogenisotope, have received great interest in different scientific domains, especially in pharmaceutical industry for the design of new drugs.Ru/PVP nanoparticles were tested for deuteration reactions of 4-methoxyaniline, 4-trifluoromethylbenzaldehyde, methyl-2,3-O-Isopropylidene-β-D-ribofuranoside and adenosine. Deuterations were not successful in the two first substrates nor in the third, where, nevertheless, deprotection and epimerisation reactions were ob-served. In the case of adenosine, the deuteration took placein a selective manner.
This work offers the synthesis of new bimetallic nanomaterials with tunable properties. Some of the developed catalysts were tested in the hydrogenation of platform molecules, such as furfural and 5-hydroxymethylfurfural, and the monometallic Ru/PVP nanoparticles were used as catalysts in deuteration reactions. |