Aller au contenu
Aller au fil d'ariane
Espace ADUM
FR
|
EN
Doctorat Toulouse
DOCTORAT DE L'UNIVERSITE DE TOULOUSE
l'École des Docteurs de Toulouse (EDT)
Les établissements
Les écoles doctorales
Conseil de la politique doctorale
FAIRE UN
DOCTORAT
Faire un doctorat
Vie doctorante
S'inscrire / se réinscrire
Cotutelle de thèse
Soutenir sa thèse
Dérogation HDR
LES FORMATIONS
Les offres de formation
Les itinéraires de formation
S'inscrire
INTERNATIONALISATION
Les programmes
Programme China Scholarship Council (CSC)
La mobilité internationale
Banque internationale de sujets
APRÈS LE
DOCTORAT
L'observatoire du doctorat
Toulouse Alumni Docteurs
Les offres d'emploi
Martin BESEDA - Admis au titre de docteur
martin.beseda@vsb.cz
Doctorat Ingénierie des Plasmas
Thèse soutenue le
13 décembre 2022 -
Université de Toulouse
Ecole doctorale
:
GEETS - Génie Electrique Electronique,Télécommunications et Santé : du système au nanosystème
Sujet
: Modélisation des propriétés de transport des ions moléculaires de l'hélium dans l'air
Mots-clés de la thèse
: plasma froid,azote,hellium,MCSCF,MRCI,dynamique moléculaire,
Direction de thèse
: Malika BENHENNI
Co-direction de thèse
: Rene Kalus
Cotutelle
École des mines d’Ostrava TCHÈQUE, REPUBLIQUE
Descriptif : In the first quarter ab initio calculations of the potential overpasses for N2 and N2+ will be performed as a basis for calculating more complex systems. During the following calculations, not only basic but also relevant excited states will be investigated. Particularly for N2+, there are known problems with a large number of energetically close excited states, some of which cross, and the resulting problems are thus difficult to solve using the usual ab initio methods. Emphasis will therefore be placed on finding such active spaces that will allow us to correctly describe individual states, while they will not cause difficulties with convergence. In the second quarter calculations of potential energy surfaces and their gradients for collision complexes created at the border of a plasma plume in contact with the atmosphere will be made. The main emphasis will be placed on the [N2 / He]+ complex calculations. This complex was chosen because helium is not only the simplest noble gas, but is also of great importance for medical applications of plasma. Nitrogen is then the most represented element in the atmosphere and it can be assumed that it will participate in the very first reactions. In the third quarter links between electronic states, both radial and non-radial, will be calculated to allow for subsequent non-dynamic dynamic calculations of the N2/He+ and N2+/He collisions planned for further dissertation work. The ultimate goal is to model plasma interactions with the environment and the formation of bioactive secondary ions. These ab initio calculations will usually be performed using standard quantum chemistry methods (multiconfiguration SCF, multireference CI, correlation consistent basis sets etc.) and software packages (Molpro, NWChem).
Unité de recherche :
LAPLACE - Laboratoire PLAsma et Conversion d'Énergie UMR 5213
- Toulouse
Intitulé de l'équipe :
PRHE - Equipe Plasmas Réactifs
Master - Martin Beseda, Ing.
obtenu en juin 2017 - École des mines d’Ostrava
Option :
Computational Mathematics
Production scientifique
-
Martin Beseda, S. Paláek, Florent X. Gadéa, Thierry Leininger, René Kalus, Malika Benhenni, Mohammed Yousfi
2022. Ab initio approaches for N 2 + and N 2 + / He ions towards modeling of the N 2 + ion in cold helium plasma
Computational and Theoretical Chemistry,
1215, pp.113809
,
-
Martin Beseda, Lubomír Říha, Alexandros Markopoulos, Petr Strakoš
2019. Performance Modeling the HTFETI Solver Implementation in the ESPRESO Library
Pareng Conference 2019,
Proceedings 2019
,
-
Ondřej Vysocký, Martin Beseda, Lubomír Říha, Jan Zapletal, Michael Lysaght, Venkatesh Kannan
2017. Evaluation of the HPC applications dynamic behavior in terms of energy consumption
Proceedings of the Fifth International Conference on Parallel, Distributed, Grid and Cloud Computing for Engineering,
Paper 3
,
-
Joseph Schuchart, Michael Gerndt, Per Gunnar Kjeldsberg, Michael Lysaght, David Horák, Lubomír Říha, Andreas Gocht, Mohammed Sourouri, Madhura Kumaraswamy, Anamika Chowdhury, Magnus Jahre, Kai Diethelm, Othman Bouizi, Umbreen Sabir Mian, Jakub Kružík, Radim Sojka, Martin Beseda, Venkatesh Kannan, Zakaria Bendifallah, Daniel Hackenberg, Wolfgang E Nagel
2017. The READEX formalism for automatic tuning for energy efficiency
Computing,
99, 727-745
,
Langues Vivantes :
Anglais
C1 - Avancé -
Espagnol
B1 - Intermédiaire -
Tchèque
C2 - Maternel
Dernière mise à jour le 5 décembre 2022