Martin BESEDA - Admis au titre de docteur


martin.beseda@vsb.cz

Doctorat Ingénierie des Plasmas


Thèse soutenue le 13 décembre 2022 - Université de Toulouse

Ecole doctorale : GEETS - Génie Electrique Electronique,Télécommunications et Santé : du système au nanosystème

Sujet : Modélisation des propriétés de transport des ions moléculaires de l'hélium dans l'air

Mots-clés de la thèse : plasma froid,azote,hellium,MCSCF,MRCI,dynamique moléculaire,

Direction de thèse : Malika BENHENNI

Co-direction de thèse : Rene Kalus

Cotutelle École des mines d’Ostrava TCHÈQUE, REPUBLIQUE
Descriptif : In the first quarter ab initio calculations of the potential overpasses for N2 and N2+ will be performed as a basis for calculating more complex systems. During the following calculations, not only basic but also relevant excited states will be investigated. Particularly for N2+, there are known problems with a large number of energetically close excited states, some of which cross, and the resulting problems are thus difficult to solve using the usual ab initio methods. Emphasis will therefore be placed on finding such active spaces that will allow us to correctly describe individual states, while they will not cause difficulties with convergence. In the second quarter calculations of potential energy surfaces and their gradients for collision complexes created at the border of a plasma plume in contact with the atmosphere will be made. The main emphasis will be placed on the [N2 / He]+ complex calculations. This complex was chosen because helium is not only the simplest noble gas, but is also of great importance for medical applications of plasma. Nitrogen is then the most represented element in the atmosphere and it can be assumed that it will participate in the very first reactions. In the third quarter links between electronic states, both radial and non-radial, will be calculated to allow for subsequent non-dynamic dynamic calculations of the N2/He+ and N2+/He collisions planned for further dissertation work. The ultimate goal is to model plasma interactions with the environment and the formation of bioactive secondary ions. These ab initio calculations will usually be performed using standard quantum chemistry methods (multiconfiguration SCF, multireference CI, correlation consistent basis sets etc.) and software packages (Molpro, NWChem).

Unité de recherche : LAPLACE - Laboratoire PLAsma et Conversion d'Énergie UMR 5213 - Toulouse
Intitulé de l'équipe : PRHE - Equipe Plasmas Réactifs

Master - Martin Beseda, Ing.

obtenu en juin 2017 - École des mines d’Ostrava
Option : Computational Mathematics

Production scientifique

- Martin Beseda, S. Paláek, Florent X. Gadéa, Thierry Leininger, René Kalus, Malika Benhenni, Mohammed Yousfi 2022. Ab initio approaches for N 2 + and N 2 + / He ions towards modeling of the N 2 + ion in cold helium plasma   Computational and Theoretical Chemistry, 1215, pp.113809,
- Martin Beseda, Lubomír Říha, Alexandros Markopoulos, Petr Strakoš 2019. Performance Modeling the HTFETI Solver Implementation in the ESPRESO Library   Pareng Conference 2019, Proceedings 2019,
- Ondřej Vysocký, Martin Beseda, Lubomír Říha, Jan Zapletal, Michael Lysaght, Venkatesh Kannan 2017. Evaluation of the HPC applications dynamic behavior in terms of energy consumption   Proceedings of the Fifth International Conference on Parallel, Distributed, Grid and Cloud Computing for Engineering, Paper 3,
- Joseph Schuchart, Michael Gerndt, Per Gunnar Kjeldsberg, Michael Lysaght, David Horák, Lubomír Říha, Andreas Gocht, Mohammed Sourouri, Madhura Kumaraswamy, Anamika Chowdhury, Magnus Jahre, Kai Diethelm, Othman Bouizi, Umbreen Sabir Mian, Jakub Kružík, Radim Sojka, Martin Beseda, Venkatesh Kannan, Zakaria Bendifallah, Daniel Hackenberg, Wolfgang E Nagel 2017. The READEX formalism for automatic tuning for energy efficiency   Computing, 99, 727-745,

Langues Vivantes : Anglais C1 - Avancé - Espagnol B1 - Intermédiaire - Tchèque C2 - Maternel

Dernière mise à jour le 5 décembre 2022